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Abstract

The problem of misclassification is common in epidemiological and clinical research. In some 

cases, misclassification may be incurred when measuring both exposure and outcome variables. It 

is well known that validity of analytic results (e.g. point and confidence interval estimates for odds 

ratios of interest) can be forfeited when no correction effort is made. Therefore, valid and 

accessible methods with which to deal with these issues remain in high demand. Here, we 

elucidate extensions of well-studied methods in order to facilitate misclassification adjustment 

when a binary outcome and binary exposure variable are both subject to misclassification. By 

formulating generalizations of assumptions underlying well-studied “matrix” and “inverse matrix” 

methods into the framework of maximum likelihood, our approach allows the flexible modeling of 

a richer set of misclassification mechanisms when adequate internal validation data are available. 

The value of our extensions and a strong case for the internal validation design are demonstrated 

by means of simulations and analysis of bacterial vaginosis and trichomoniasis data from the HIV 

Epidemiology Research Study.
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1 Introduction

In many epidemiologic and clinical studies, one aims to quantify the association between 

binary disease and exposure status, for instance, via odds ratios (ORs) based on 2 × 2 tables. 

A common practical problem is that misclassification may exist in one or both variables. 

The threats to the validity of analytic results that stem from misclassification have received 

considerable attention. For example, the “matrix method” discussed in epidemiological 

textbooks (Kleinbaum et al., 1982; Rothman and Greenland, 1998) provides variations on an 

intuitive correction identity due to Barron (1977) that is parameterized in terms of familiar 

sensitivity and specificity properties of surrogate measurements on disease and exposure 

status. Greenland (1988) discussed point estimation and derived variance estimators under 

differential and nondifferential exposure misclassification using the matrix method, under 

various validation sampling schemes. By instead parameterizing in terms of positive and 

negative predictive values, Marshall (1990) developed an alternative correction identity later 

designated as the “inverse matrix method” (Morrissey and Spiegelman, 1999). The original 

inverse matrix method is restricted to the situation when there is differential 

misclassification of one variable (disease or exposure status), in which case it has been 

shown that Marshall’s closed-form internal validation data-based corrected OR estimator is 

in fact a maximum-likelihood estimator (MLE) (Lyles, 2002; Greenland, 2008). Efficiency 

studies comparing the matrix and inverse matrix methods when exposure is misclassified 

also appear in the literature (Morrissey and Spiegelman, 1999).

We recognize the practical need of developing intuitive methods for estimating ORs in 2 × 2 

tables with a more general view of misclassification. In particular, Barron’s (1977) matrix 

method is an identity that assumes nondifferential and independent misclassification of both 

variables and is directly applicable only as a sensitivity analysis tool. Greenland and 

Kleinbaum (1983) extended this identity to permit differential but independent 

misclassification of both Y and X, but did not delve into efficient analysis based on 

validation data. Greenland (1988), Marshall (1990), Morrissey and Spiegelman (1999), and 

Lyles (2002) facilitated efficient estimation of the crude OR via validation data, but all 

considered misclassification of only one variable (e.g. exposure). Holcroft et al. (1997) 

tackled a similar problem with the use of a three-stage validation design, by proposing a 

class of semiparametric estimators.

Here, we seek to further extend the focus within the 2 × 2 table setting in a way that allows 

full generalization of the assumed misclassification process, and as a result subsumes the 

preceding treatments as special cases. This extension is driven by the practicalities of study 

design and analysis, as we focus on flexible modeling to account for complex 

misclassification via a rich internal validation sample when both binary variables are subject 

to errors in measurement. Rather than solely a theoretical exercise, it is directly motivated 

by real data for which we demonstrate that only this most general misclassification model is 

adequate.
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In Section 2, we provide a maximum-likelihood (ML) framework that can be viewed as a 

practical facilitation of generalized versions of the matrix and inverse matrix methods. To 

our knowledge, it constitutes the first generalization of the matrix method identity to account 

for both dependent and differential misclassification and the first generalization of the 

inverse matrix identity to account for misclassification of both X and Y. We draw 

comparisons across methods and make suggestions for analyzing data in practice, heavily 

emphasizing the advantages of internal validation subsampling. This strategy, when feasible, 

facilitates efficient estimation of corrected ORs while avoiding serious biases that can occur 

when the assumed misclassification model is too simplistic. In addition, we suggest a model 

selection procedure that is readily implemented in standard statistical software. While our 

primary focus is on the point estimation of ORs in cross-sectional studies, we also briefly 

address the applicability of the methods to case–control studies. In Section 3, we introduce 

our motivating example, based on assessments of bacterial vaginosis (BV) and 

trichomoniasis (TRICH) in the HIV Epidemiology Research study (HERS). This example 

clearly illustrates how serious misinterpretation of the data can result when overly simplified 

misclassification models are assumed and highlights the benefits of the proposed approach. 

In Section 4, we present simulation studies to demonstrate the overall performance of the 

ML methodology in the context of cross-sectional studies.

2 Methods

2.1 Notation and terminology

2.1.1 Differential and dependent misclassification—Consider a 2 × 2 table in which 

one measures an error-prone surrogate X* in place of a true exposure X and an error-prone 

Y* in place of a true response Y. We assume X, X*, Y, and Y* are all binary variables. Now 

define πxy = Pr(X = x, Y = y) and . The true 

OR of primary interest is given by π11π00/π10π01, while with misclassification in both 

variables, the naïve OR is .

The observed data likelihood contribution for an observation with (X* = x*, Y* = y*) can be 

expressed as follows without losing generality:

[1]

The first and second terms in eq. [1] represent the most general form of the likelihood 

expressed with a generalized version of the familiar misclassification parameters known as 

sensitivity (SE) and specificity (SP). Without additional constraints, we define SEYxx* = 

Pr(Y* = 1|Y = 1, X = x, X* = x*) and SPYxx* = Pr(Y* = 0|Y = 0, X = x, X* = x*). Note that 

misclassification parameters on Y depend on the joint distribution of (X, X*), indicating the 

misclassification process in Y is differential but also depends on X, which is subject to 

misclassification too. This is potentially important, since it is far more common to assume 

independence of the misclassification processes (see Section 2.1.2). Similarly, denote SEXy 

= Pr(X* = 1|X = 1, Y = y) and SPXy = Pr(X* = 0|X = 0, Y = y), taking the typical form 
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associated with differential misclassification (Thomas et al., 1993). Terminology-wise, we 

view the general expression in eq. [1] as reflecting “differential and dependent 

misclassification”.

Alternatively, one may choose to parameterize the observed data likelihood contribution in 

terms of positive and negative predictive values, that is,

[2]

where the first and second terms relate to predictive values of X and Y, defined as PPVYxx* = 

Pr(Y = 1|Y* = 1, X = x, X* = x*), NPVYxx* = Pr(Y = 0|Y* = 0, X = x, X* = x*), PPVXy* = Pr(X 

= 1|X* = 1, Y* = y*), and NPVXy* = Pr(X = 0|X* = 0, Y* = y*). In contrast to the 

parameterization using SE and SP, note that the predictive values of X depend on the 

potentially mismeasured response. Again, predictive values of Y depend on the joint 

distribution of (X, X*), implying the dependence of misclassification of Y on the other 

misclassified variable. When only X is subject to misclassification, eq. [2] can be rewritten 

as . This reflects Marshall’s (1990) 

original proposal, which we refer to as the “inverse matrix method”.

2.1.2 Differential and independent misclassification—Assuming independent 

misclassification implies that Pr(Y* = y*, X* = x*|Y = y, X = x) = Pr(Y* = y*|Y = y, X = 

x)Pr(X* = x*|X = x, Y = y). In other words, X* and Y* are conditionally independent given (X, 

Y). However, it should be noted that the reverse may not be true. This corresponds to 

reducing eq. [1] to the following form:

[3]

where misclassification on Y only depends on true exposure X characterized by parameters 

SEYx = Pr(Y* = 1|Y = 1, X = x) and SPYx = Pr(Y* = 0|Y = 0, X = x). The misclassification 

model for X stays the same as in Section 2.1.1.

2.1.3 Nondifferential and independent misclassification—When assuming 

nondifferential and independent misclassification, we define SEX = Pr(X* = 1|X = 1), SPX = 

Pr(X* = 0|X = 0), SEY = Pr(Y* = 1|Y = 1), and SPY = Pr(Y* = 0|Y = 0). We can then rewrite 

the observed data likelihood contribution as:

[4]

This corresponds to the setting originally studied by Barron (1977).

2.1.4 Other combinations—Sections 2.1.1–2.1.3 outline three misclassification 

mechanisms. However, other possibilities exist; for example, Y could be differentially but X 

nondifferentially misclassified. While we confine our main attention to the three situations 
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described above, the proposed methodology accommodates such variations without 

difficulty assuming adequate internal validation sampling.

2.2 ML approach

In general, the main study likelihood piece based on observed data pairs ( ) (m = 1, 

…, M) can be expressed as:

[5]

where the π*s take appropriate forms corresponding to different assumptions on the 

misclassification process as described in Section 2.1 and m denotes for the main study 

sample. For instance, if parameterizing in terms of SE/SP and allowing differential and 

dependent misclassification, we have 

. 

In contrast, if independence is assumed while preserving differentiality on both variables, 

. 

Under the most simplified setting (e.g. Barron, 1977), the simultaneous assumptions of 

independent and nondifferential misclassification imply that 

. The other 

π*s are derived similarly under each scenario (Tang, 2012). Note that the “main study only” 

likelihood in eq. [5] is directly applicable solely for sensitivity analysis. We emphasize 

extensions to accommodate a main/internal validation design in Section 2.5.

2.3 Generalized matrix method

We generalize the concept of the matrix method and its extensions (Kleinbaum et al., 1982; 

Greenland and Kleinbaum, 1983) by flexibly incorporating the full range of possible 

misclassification models. In general, one is able to relate surrogate and true cell probabilities 

via the equality Π* = AΠ, where Π = (π11 π01 π10 π00)′,  and 

the definition of A varies according to the assumptions made. For differential and dependent 

misclassification, we derive A in its most general form as follows:

Under other assumptions, the matrix A can be derived as in Appendix 1. The matrix method 

identity relies upon inversion of the matrix A in order to obtain the vector Π = A−1Π*.

2.4 Generalized inverse matrix method

The inverse matrix identity directly expresses true cell probabilities as sums of products of 

surrogate cell probabilities and predictive values. Here, we extend the proposal of Marshall 

(1990) to a general context with both variables misclassified in a 2 × 2 table. For example, 

under dependent and differential misclassification, the law of total probability dictates that 
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. Packaging linear equations into matrices, the form of the generalized inverse matrix 

method is as given in Marshall’s original proposal: Π = BΠ*. However, in our approach, the 

matrix B takes a more complicated form to accommodate a general misclassification 

mechanism for both the X and the Y variables:

In contrast to the generalized matrix method, there is no matrix inversion involved in 

computing the corrected OR through the generalized inverse matrix method. In principle, 

this could confer a numerical advantage in practice, although again direct use of the identity 

is generally restricted to the setting of sensitivity analysis.

2.5 Estimation via internal validation sampling

The estimate of the corrected OR is . For all of the approaches presented 

above, estimation of misclassification probabilities is crucial in practice. When possible, we 

recommend the use of an internal validation subsample randomly selected from one’s 

current study, for which both true binary variables are measured via gold-standard methods 

along with the error-prone methods used in the main study. The primary appeal of adopting 

internal (as opposed to external) validation sampling is the avoidance of the necessity to 

assume “transportability” of misclassification probabilities (Begg, 1987; Carroll et al., 2006) 

and the accommodation of more general misclassification mechanisms.

When allowing full generality, that is, dependent and differential misclassification, it can be 

shown that a full likelihood approach based on the proposed main/internal validation design 

is equivalent regardless of whether parameterized based on predictive values or SE/SP 

probabilities (Tang, 2012). There are in total 16 types of validation set records, if validations 

on X and Y are measured simultaneously for each subject in the subsample. Table 1 shows 

the likelihood contributions for each validation record type based on both parameterizations. 

In contrast, the main study likelihood based on (X*, Y*) records is given explicitly in eq. [5], 

that is,

If parameterizing in terms of SE and SP values, all the π*s are further expanded (see Section 

2.2).

The internal validation subsample likelihood is given by
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where Lvp is the likelihood term corresponding to observation type p in Table 1, while nvp is 

the total number of observations of the pth type (p = 1, 2, … 16). Note that the total 

validation study sample size is . The overall likelihood to be maximized is 

based on a total of M + nv subjects and is proportional to the product of the main and 

validation study components, i.e. Lmain × Lval.

There are no closed-form solutions for the MLEs based on the overall likelihood written in 

terms of SE and SP. Interestingly, however, closed forms exist for the predictive value 

parameterization in the most general case. For example, one can readily verify that

where the I notation represents an indicator that the conditions described in the subscript are 

met (Tang, 2012). The MLEs for the πs can then be estimated from the , and 

 by direct use of the generalized inverse matrix identity of Section 2.4. Because the 

two parameterizations are equivalent under the circumstance of dependent and differential 

misclassification, we may also obtain closed-form MLEs for the  and  parameters as 

functions of the  and  in that setting. For example,

The remaining closed-form MLEs are displayed in Appendix 2.

When the misclassification process is not fully general (e.g. assuming independent 

misclassification and/or nondifferential misclassification of either variable), the equivalence 

between the likelihoods based on the SE/SP and predictive value parameterizations no 

longer holds. In such cases, it appears that there are no simple closed forms for likelihood-

based , and π̂s. If one supplies the generalized matrix method with data-driven SE 

and SP estimates that are not MLEs, the corrected  will not be fully efficient. These 

conclusions are consistent with previous findings in a simpler context, with misclassification 

of only one variable (Lyles, 2002).

In general, we recommend the use of the ML approach for optimal efficiency and the ease of 

numerically computing standard errors. Optimizing the full main/internal validation 

likelihood under either parameterization path is readily achieved by taking advantage of 

numerical procedures in standard statistical software. As such, we view the matrix and 
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inverse matrix constructs more as instructive identities than as practical analysis tools, 

unless they are to be used solely for sensitivity analyses. Straightforward multivariate delta-

method calculations allow computing the approximate standard error of the corrected 

 based on ML, after obtaining the π̂s and the corresponding numerically-derived 

Hessian. SAS NLMIXED (SAS Institute, Inc., 2008) programs for accomplishing these 

tasks are readily available from the first author.

A natural question one might ask is whether measuring (X*, Y*) on every subject in addition 

to (X, Y) yields a different or improved estimate of the true OR characterizing the (X, Y) 

association. In fact, if (X, Y, X*, Y*) is available on all participants, the available information 

for estimating the OR is equivalent to that contained in the (X, Y) data alone. The overall 

likelihood then reduces to Lval. In Appendix 3, we show that maximizing the reduced form 

of the overall likelihood (Lval only) under the most general misclassification model in this 

situation leads to exactly the same MLEs of the πs as those obtained from analyses ignoring 

(X*, Y*). A similar argument can be readily derived under other types of misclassification 

models. This finding unsurprisingly suggests that knowing surrogates when gold-standard 

measures are available on the whole sample does not offer additional value in the estimation 

of the primary effect (e.g. OR) of interest, which further implies that if gold-standard 

measures are comparatively affordable compared to surrogates, it is more efficient to 

evaluate via gold standards only.

2.6 Notes on case–control studies

While our focus has been on cross-sectional sampling, the case–control sampling scheme is 

also worthy of discussion. Here, we consider “case–control” studies as those where case 

oversampling is conducted based on the error-prone responses. In other words, observations 

with Y* = 1 (“cases”) are sampled with a greater probability than those with Y* = 0 

(“controls”). Prior work (Greenland and Kleinbaum, 1983) has noted that supplying the 

population misclassification probabilities to the correction methods will yield invalid 

estimates; however, with nondifferential misclassification, the validity of the analytic results 

could be restored by introducing the sampling fraction of cases and controls into the 

correction. It was also noted in Lyles et al. (2011) that the main/internal validation design is 

favorable for handling such oversampling under nondifferential misclassification, because it 

automatically yields estimates of the “operating” misclassification probabilities. Similar 

findings are observed in the current setting. With oversampling of “cases” (Y* = 1), the 

method described in the previous sections yields valid estimation of the OR, as long as 

misclassification of Y is nondifferential. When the nondifferential misclassification 

assumption is not met, however, the validity of the estimated OR based on the main/internal 

validation design does not hold under “case” oversampling. More details can be found in 

Tang (2012).

2.7 Model selection

When correcting the estimate of the OR, we would ideally choose the misclassification 

mechanism that generated the observed data. Here, we provide a straightforward model 

selection procedure to guide practitioners. For ease of discussion, denote the dependent and 

differential misclassification model as “Model 1”, followed by “Model 2” (the independent 

Tang et al. Page 8

Epidemiol Method. Author manuscript; available in PMC 2015 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and differential misclassification model in Section 2.1.2) and “Model 3” (the completely 

nondifferential model in Section 2.1.3). Model 1 reflects a fully general misclassification 

mechanism, while Model 2 can be regarded as a generalization of Marshall’s (1990) 

framework to the situation when both X and Y are misclassified and Model 3 is a 

representation of Barron’s (1977) setting.

Define AICq = the value of the Akaike Information Criterion (AIC) (Akaike, 1974) upon 

fitting Model q (q = 1, 2, 3). In practice, we recommend selecting the model that yields the 

smallest value of AIC, as that criterion is well known to balance between the number of 

necessary parameters included and the quality of model fit. One may then simply report the 

results corresponding to the selected model. Although a more accurate standard error for the 

resulting estimated log(OR) might presumably be obtained via resampling, our empirical 

studies suggest that it is suitably reliable and computationally efficient to report the standard 

error from the selected model (see Section 4). We apply this AIC-based approach to real 

data in the following section, and a program utilizing the SAS NLMIXED procedure to 

implement the model selection method is available from the first author. For additional 

comments regarding selection of the misclassification model, see Section 5.

3 Example

Our motivating example comes from the HERS. This is a multi-center prospective cohort 

study with a total of 1,310 women enrolled in four U.S. cities from 1993 to 1995 (Smith et 

al., 1997). Among them, 871 women were HIV-infected, and 439 were not infected but at 

risk. During each semi-annual visit, a wealth of subject-specific information was collected. 

The question of interest is to assess the association between two binary variables: BV status 

and TRICH status. BV was measured by two different clinical methods: the clinically-based 

(CLIN) and the laboratory-based (LAB) methods. CLIN is a less accurate method that 

diagnoses BV by evaluating multiple clinical criteria based on a modified Amsel’s criteria 

(Amsel et al., 1983), while LAB relies on a more sophisticated Gram-staining technique 

(Nugent et al., 1991). The LAB method is more expensive and serves here as an arguable 

gold standard, while the CLIN method is more cost-efficient and accessible. The presence of 

TRICH was evaluated by a clinical wet mount technique characterized by low sensitivity 

(Thomason et al., 1988), along with a gold-standard culture method. For both BV and 

TRICH measurements, gold-standard and error-prone diagnoses are widely available for 

HERS participants at Visit 4 and beyond. This feature of the HERS makes for an excellent 

illustrative example of internal validation data-based methodology.

We consider 916 patients with complete observations on both error-prone and gold-standard 

diagnoses of BV and TRICH at the fourth HERS visit. We selected Visit 4, because a 

previous examination uncovered a complex misclassification process underlying the 

assessment of BV status at that visit (Lyles et al., 2011). The prevalence of BV via the LAB 

technique in the sample was 18.2%, while due to misclassifying some diagnoses the naïve 

CLIN prevalence was only 7.5%. Compared to the LAB BV diagnosis, estimates suggest 

that CLIN BV conferred a crude SE around 37% and a crude SP of about 99%. The 

prevalence of TRICH in our sample was 40.2% when assessed by culture testing. In 
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contrast, when evaluated by wet mount, the prevalence was only 24.5%, with an estimated 

crude SE of 51.9% and SP of 94.0%.

Table 2 summarizes the results based on using gold-standard measurements only, error-

prone diagnoses only, and fitting correction models via the proposed main/internal 

validation design under various misclassification mechanisms. Note that the naïve result 

characterizing the association between CLIN BV and wet mount-based TRICH inflated the 

estimated OR by nearly 50% relative to the LAB and culture-based analyses. For main/

internal validation analysis based on Models 1–3, we utilized a random subsample selecting 

¼ of the total sample size as the internal validation set. A summary of the data comprising 

the resulting main and internal validation samples is presented in Table 7 (Appendix 4). The 

corrected  is close to the gold-standard (LAB and culture-based) result, though with 

expected efficiency loss, when dependent and differential misclassification is allowed 

(Model 1). If differential but independent misclassification (Model 2) is assumed, the 

corrected  appears slightly biased away from the null. When a nondifferential 

misclassification model is adopted, the corrected  is similar to that obtained via the naïve 

result.

With the proposed model selection approach (Section 2.7), Model 1 is chosen with the 

smallest AIC value among the three candidate models. Therefore, we retain the fully general 

Model 1 as the final model, suggesting that the HERS data require one to account for 

dependent misclassification that is differential with respect to both X and Y. The results 

indicate that TRICH is positively associated with BV among the HERS population at Visit 

4, and our corrected analysis based on Model 1 agrees with the gold-standard analysis 

extremely well.

As discussed in Section 2.5, when utilizing both the gold-standard and surrogate measures of 

BV and TRICH for all 916 subjects in order to specify the corresponding full likelihood Lval, 

we obtained the identical log(OR) estimate and standard error as when performing the 

“gold-standard” analysis in Table 2. Therefore, this result is omitted from the table.

4 Simulation studies

4.1 Study I: mimicking real-data example

Our first simulation experiment evaluates the performance of the proposed methods under 

conditions mimicking the HERS example (Section 3). Cell counts were simulated from a 

multinomial distribution with cell probabilities of (π11 = 0.1146, π10 = 0.2871, π01 = 0.0677, 

π00 = 0.5306), and main and internal validation sample sizes (nm = 687, nv = 219) similar to 

those observed in the HERS example. Error-prone response Y* and exposure X* were 

generated with misclassification probabilities estimated from the HERS sample based on the 

fit of Model 1 (data available in Table 7), where the misclassification process was assumed 

dependent and differential. For each of 500 simulated datasets, we conducted naïve analysis 

associating Y* with X*, true analysis with Y and X, and main/internal validation analyses via 

Models 1–3.
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Table 3 summarizes the results. The naïve analysis yields a result biased away from the null. 

Model 1 produces the corrected OR estimate closest to the gold-standard OR, with tolerable 

sacrifice in efficiency. The 95% CI coverage under Model 1 is also excellent. When 

reducing Model 1 to other simpler versions by assuming independent or nondifferential 

misclassification, the results are biased, reflecting the fact that the reduced models are not 

consistent with the data generation process. Note that with the simplest model assuming 

nondifferential misclassification of both variables (Model 3), the corrected result is similar 

to the naïve result (in fact, arguably worse). This strongly highlights the importance of 

internal validation data to permit flexibility in the selected misclassification model.

The corrected results using the generalized matrix methods discussed in Section 2.1.1 agree 

well with the MLEs, when ML estimates of misclassification probabilities are supplied. 

However, when simpler crude estimates obtained from the validation subsample are inserted 

into the generalized matrix method, results are not satisfying, even producing negative 

estimates of probabilities in some cases (Tang, 2012; results not shown). Thus, in practice, 

we favor the proposed main/internal validation study-based full ML approach in the interest 

of obtaining both valid and efficient results.

4.2 Study II: performance of model selection

The results in Section 4.1 suggest the importance of misclassification model selection to 

ensure the model is specified correctly (or, at least, generally enough). Extensive simulations 

were performed to evaluate the performance of the proposed AIC-based model selection 

strategy (Tables 4–6), when the underlying association was negative (Table 4), or moderate 

positive (Table 5), or strong positive (Table 6). Under various settings, the model was 

chosen correctly most of the time. For example, under setting 4, the true underlying model 

from which data were generated was Model 3. Unsurprisingly, the more general Models 1 

and 2 yield valid results. However, with the proposed model selection strategy, Model 3 is 

correctly picked 88.0% of the time, yielding a slight improvement in efficiency relative to 

Model 1. In contrast, under setting 6, Model 1 is the underlying model; thus, estimates from 

Models 2 and 3 are not valid. By correctly selecting Model 1, 94.8% of the time, however, 

the model selection strategy maintained overall validity and achieved satisfactory 95% CI 

coverage.

The simulation results in Tables 4–6 suggest that AIC is a highly effective criterion for 

selecting among the alternative misclassification models. The key concern, however, is 

maintenance of validity in the OR estimate. Since the true misclassification model is 

unknown, only Model 1 ensures such validity in theory. Thus, whenever the internal 

validation subsample is of adequate size to support its fit, Model 1 must be viewed as the 

safest choice. Another argument in favor of Model 1 is the fact that, at least under the 

simulation conditions examined here, it produced a log(OR) estimate with very similar mean 

and variance properties to those characterizing the MLEs under simpler true underlying 

misclassification models.
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5 Discussion

We have considered the classic problem of analyzing 2 × 2 tables, when both binary 

variables are subject to misclassification. Our main contributions are twofold. First, we have 

expanded the well-studied matrix (Barron, 1977) and inverse matrix (Marshall, 1990) 

identities to a more general context than ever before. Specifically, the results given in 

Sections 2.3 and 2.4 extend both identities to a fully general scenario with dependent and 

differential misclassification of two binary variables and could serve to update 

epidemiological methodology texts with regard to this topic. Secondly, we place heavy 

emphasis on specifying likelihood functions corresponding to main/internal validation 

designs under potentially complex misclassification mechanisms involving two binary 

variables. To our knowledge, this effort provides the first fully articulated framework to 

accomplish a joint main/internal validation study-based ML analysis allowing for dependent 

and differential misclassification of both variables. By parameterizing in terms of positive 

and negative predictive values, we have derived closed-form MLEs for the true cell 

probabilities based on this fully general misclassification model. The ML analysis requires 

numerical optimization under more restrictive nested misclassification models, but easily 

implemented programs designed to fit Models 1–3 (Section 2.7) using SAS NLMIXED are 

available from the first author by request.

In the context studied here, the ability to apply a misclassification model that is sufficiently 

general can be critical, if one hopes to obtain a valid estimate of association. Our motivating 

example involving BV and TRICH assessments from the HERS illustrates this point 

extremely well, as we find evidence suggesting bias in all estimates of the OR except the 

one based on the fully general dependent and differential misclassification model introduced 

in this article. When misclassification of either variable is differential, the naïve log(OR) 

estimator can be biased in either direction. Moreover, the HERS example demonstrates that 

a corrected estimate based on an incorrect nondifferential error assumption for either 

variable can be potentially worse than the naïve estimate. For this reason, we urge 

practitioners not to simply assume nondifferential misclassification of either variable, unless 

that assumption is supported by the data or there is no other resource.

It should be noted that familiar matrix and inverse matrix methods as applied in practice are 

only equivalent to special cases of the proposed likelihood-based approach, when MLEs of 

misclassification rates are supplied into the generalized matrix identities. Otherwise, 

estimators based on application of the matrix and inverse matrix methods are not fully 

efficient. For this reason, we favor the approach advocated here in which the full main/

internal validation study likelihood is utilized. If one is also interested in obtaining a 

confidence interval for the OR, numerical optimization of the likelihood function greatly 

reduces the complexity of delta-method-based calculations for computing standard errors to 

accompany the adjusted log(OR) estimate (Tang, 2012; details and program available from 

first author).

We have proposed a straightforward model selection procedure for practitioners who not 

only seek to obtain a valid analytic result but also pursue a more precise result that may be 

achievable via a correct reduced misclassification model. It has been demonstrated that the 
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proposed model selection procedure works stably and permits the choice of simpler models 

when the deviation of the estimated OR is acceptable relative to the general model. 

However, since the saturated model allowing dependent and differential misclassification is 

always valid and appeared to sacrifice little efficiency in our simulations given an adequate 

validation sample, it may often be prudent to avoid model selection and simply settle upon 

the saturated misclassification model.

Our findings suggest that when designing large-scale epidemiologic studies for which 

standard outcome (Y) and exposure (X) assessments are error-prone, it is valuable to invest 

in collecting an internal validation subsample with gold-standard measurements applied to 

both Y and X. This allows one to evaluate and adjust for differential and/or dependent 

misclassification if it could be an issue. When gold standards are not available, however, one 

should consider sensitivity analyses to explore the potential effects of misclassification 

(Lash and Fink, 2003; Fox et al., 2005; Lyles and Lin, 2010). In our context, a series of pre-

specified misclassification rates could be supplied into matrices A and B of the generalized 

matrix and inverse matrix methods in Sections 2.3 and 2.4, respectively, to assess their 

impact on the estimated OR. We caution, however, that such sensitivity analyses may 

generally be invalid under case oversampling (e.g. Greenland and Kleinbaum, 1983).

We are currently investigating natural extensions of the current work to the multivariable 

regression and longitudinal settings, with internal validation subsampling to facilitate 

misclassification adjustments. Future work could involve specific consideration of cost-

efficient internal validation designs when both X and Y are misclassified, as in practice the 

costs associated with validating X or Y may be different. As an extension of prior work, it 

could be of interest to consider the allocation of validated observations cleverly into 

different types, to ensure the control of cost while still maintaining analytic validity. In some 

cases, formal considerations of this question may reveal the most cost-efficient approach to 

be the one in which the gold-standard approach is applied to all experimental units 

(Spiegelman and Gray, 1991; Lyles et al., 2005). A sample simulation program evaluating 

analytic validity with various validation sample sizes and pre-specified parameters is 

available from the author upon request, which offers a practical guide for study planning. 

Also, investigators may sometimes be more interested in validating a particular 

subpopulation, for example, those with a disease than those without, leading to nonrandom 

validation sampling. There could also be interest in extending the methods studied here to 

settings in which one or both gold-standard methods are imperfect, or “alloyed” (Wacholder 

et al., 1993; Brenner, 1996).
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Appendix 1: matrix A for generalized matrix identity under various 

situations

Assuming differential misclassification with independence,

which has the same form as defined by Greenland and Kleinbaum (1983). Under the 

circumstance of nondifferential and independent misclassification,

and with some algebraic work, one can easily show that this equation is equivalent to that 

underlying Barron’s original matrix method (Barron, 1977). With algebraic work, it can be 

shown that A is invertible if and only if SEX + SPX − 1 > 0 and SEY + SPY − 1 > 0. Under 

usual circumstances with reasonable error-prone assessments, one can reasonably expect 

these two inequalities to hold. The generalized matrix method is then derived immediately 

as Π = A−1Π*.
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Appendix 2: closed-form ML estimators for SE and SP parameters

Appendix 3: closed-form ML estimators for πs with (X, Y, X*, Y*) available 

on all subjects

In general, Lfull = Lmain × Lval. When (X, Y, X*, Y*) is measured on the whole sample, every 

subject can be regarded as a validation observation, so that there are no main study 

observations (i.e. M = 0 in Section 2.5) in this special case. Thus, Lfull = Lval.

Under the most general misclassification model (Model 1 in Section 2.7), we may write the 

likelihood as follows:

The above term can be rewritten as:
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which is  multiplied by a piece only 

involving misclassification probabilities (denoted by P). As a result,

[6]

Since the term P does not involve primary parameters, we can maximize the above log 

likelihood in terms of the πs easily with closed-form solutions as , where I is 

defined similarly as in Section 2.5. The standard errors can be derived by taking the second 

derivatives of eq. [6] with respect to the πs. It should be noted that if only interested in 

primary parameters, the log likelihood expression in eq. [6] has exactly the same form when 

ignoring (X*, Y*). This confirms that inference on the πs stays the same no matter whether 

surrogate information is taken into account or not, when all participants in the study receive 

gold-standard evaluations. Under other less general misclassification models, the conclusion 

holds by following a similar argument.
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Appendix 4: a summary of the fourth HERS visit data for models in Section 

3

Table 7

BV and TRICH data of 916 participants at the fourth HERS visit

Main study

CLIN BV Wet mount TRICH Total

− +

− 497 23 520

+ 138 29 167

Total 635 52 687

Internal validation sample

CLIN BV = 1, WET TRICH = 1, LAB BV = 1, CULTURE TRICH = 1 7

CLIN BV = 1, WET TRICH = 1, LAB BV = 1, CULTURE TRICH = 0 0

CLIN BV = 1, WET TRICH = 1, LAB BV = 0, CULTURE TRICH = 1 3

CLIN BV = 1, WET TRICH = 1, LAB BV = 0, CULTURE TRICH = 0 0

CLIN BV = 1, WET TRICH = 0, LAB BV = 1, CULTURE TRICH = 1 11

CLIN BV = 1, WET TRICH = 0, LAB BV = 1, CULTURE TRICH = 0 28

CLIN BV = 1, WET TRICH = 0, LAB BV = 0, CULTURE TRICH = 1 0

CLIN BV = 1, WET TRICH = 0, LAB BV = 0, CULTURE TRICH = 0 8

CLIN BV = 0, WET TRICH = 1, LAB BV = 1, CULTURE TRICH = 1 2

CLIN BV = 0, WET TRICH = 1, LAB BV = 1, CULTURE TRICH = 0 0

CLIN BV = 0, WET TRICH = 1, LAB BV = 0, CULTURE TRICH = 1 4

CLIN BV = 0, WET TRICH = 1, LAB BV = 0, CULTURE TRICH = 0 1

CLIN BV = 0, WET TRICH = 0, LAB BV = 1, CULTURE TRICH = 1 11

CLIN BV = 0, WET TRICH = 0, LAB BV = 1, CULTURE TRICH = 0 34

CLIN BV = 0, WET TRICH = 0, LAB BV = 0, CULTURE TRICH = 1 11

CLIN BV = 0, WET TRICH = 0, LAB BV = 0, CULTURE TRICH = 0 109

Total 229
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Table 1

Description and likelihood contributions for 16 possible types of observations under the internal validation 

sampling

Obs. type Description Likelihood contribution in terms of SE 
and SP

Likelihood contribution in terms of predictive 
values

1 X* = 1, Y* = 1, X = 1, Y = 1 SEY11SEX1π11 PPVY11PPVX1 π11
*

2 X* = 1, Y* = 1, X = 1, Y = 0 (1−SPY11)SEX0π10 (1−PPVY11)PPVX1 π11
*

3 X* = 1, Y* = 1, X = 0, Y = 1 SEY01(1−SPX1)π01 PPVY01(1−PPVX1) π11
*

4 X* = 1, Y* = 1, X = 0, Y = 0 (1−SPY01)(1−SPX0)π00 (1−PPVY01)(1−PPVX1) π11
*

5 X* = 1, Y* = 0, X = 1, Y = 1 (1−SEY11)SEX1π11 (1−NPVY11)PPVX0 π10
*

6 X* = 1, Y* = 0, X = 1, Y = 0 SPY11SEX0π10 NPVY11PPVX0π10
*

7 X* = 1, Y* = 0, X = 0, Y = 1 (1−SEY01)(1−SPX1)π01 (1−NPVY01)(1−PPVX0) π10
*

8 X* = 1, Y* = 0, X = 0, Y = 0 SPY01 (1−SPX0)π00 NPVY01(1−PPVX0) π10
*

9 X* = 0, Y* = 1, X = 1, Y = 1 SEY10 (1−SEX1)π11 PPVY10(1−NPVX1) π01
*

10 X* = 0, Y* = 1, X = 1, Y = 0 (1−SPY10)(1−SEX0)π10 (1−PPVY10)(1−NPVX1) π01
*

11 X* = 0, Y* = 1, X = 0, Y = 1 SEY00SPX1π01 PPVY00NPVX1π01
*

12 X* = 0, Y* = 1, X = 0, Y = 0 (1−SPY00)SPX0π00 (1−PPVY00) NPVX1π01
*

13 X* = 0, Y* = 0, X = 1, Y = 1 (1−SEY10)(1−SEX1)π11 (1−NPVY10) (1−NPVX0) π00
*

14 X* = 0, Y* = 0, X = 1, Y = 0 SPY10 (1−SEX0)π10 NPVY10(1−NPVX0)π00
*

15 X* = 0, Y* = 0, X = 0, Y = 1 (1−SEY00)SPX1π01 (1−NPVY00)NPVX0π00
*

16 X* = 0, Y* = 0, X = 0, Y = 0 SPY00SPX0π00 NPVY00NPVX0π00
*

Note: See Section 2.1 for the definitions of the terms.
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Table 2

Results of analysis of 916 women at Visit 4 in the HERS, effects of correction models on OR estimates under 

various misclassification assumptions

Model
 (StdErr)  (95% CI)

AIC

Naïvea 1.54(0.26) 4.65 (2.81, 7.69)

Gold standardb 1.14(0.18) 3.13 (2.21, 4.43)

Main/internal validation: Model 1c 1.18(0.33) 3.24 (1.14, 5.35) 1,935.0

Main/internal validation: Model 2d 1.25(0.32) 3.48 (1.25, 5.71) 1,946.0

Main/internal validation: Model 3e 1.58(0.31) 4.84 (1.90, 7.78) 1,942.9

Notes:

a
CLIN BV vs wet mount TRICH for all 916 subjects.

b
LAB BV vs culture TRICH for all 916 subjects.

c
229 internal validation and 687 main study observations per simulation. Model 1 assumes dependent and differential misclassification.

d
Model 2 assumes independent and differential misclassification.

e
Model 3 assumes completely nondifferential misclassification.
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Table 3

Results of simulations addressing main/internal validation study-based analysis mimicking HERS data

Model
 (SD)

95% CI coverage

Naïvea 1.42 (0.23) 67.4%

Gold standardb 1.15 (0.18) 93.6%

Model 1c 1.16 (0.34) 95.7%

Model 2d 1.28 (0.34) 93.3%

Model 3e 1.58 (0.31) 72.4%

Notes: 500 simulations; 229 internal validation and 687 main study observations per simulation. True log(OR) = 1.14.

a
  calculated using (Y*, X*) data.

b
  calculated using (Y, X) data. SEx1 = 0.55, SPx1 = 0.82, SEx0 = 0.51, SPx0 = 0.95, SEy11 = 0.47, SPy11 = 0.98, SEy01 = 0.82, SPy01 = 

0.99, SEy10 = 0.21, SPy10 = 0.98, SEy00 = 0.31, and SPy00 = 0.99.

c
Model assuming dependent and differential misclassification.

d
Model assuming independent and differential misclassification.

e
Model assuming completely nondifferential misclassification.
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Table 4

Performance of model selection with main/internal validation study-based analysis under a negative 

association

Model
 (SD)

Mean SE 95% CI coverage

Setting 1: SEX =0.60, SPX = 0.90, SEY = 0.70, SPY = 0.80

Naïve −0.32 (0.15) 0.15 0

Gold standard −1.10 (0.14) 0.15 95.4%

Model 1 −1.10 (0.28) 0.29 95.2%

Model 2 −1.10 (0.28) 0.28 94.8%

Model 3 (underlying model) −1.10 (0.27) 0.27 95.4%

Model selectiona −1.10 (0.27) 0.27 95.4%

Setting 2: SEX1 = 0.60, SPX1 = 0.60, SEX0 = 0.90, SPX0 = 0.90, SEY1 = 0.40, SPY1 = 0.98, SEY0 = 0.70, SPY0 = 0.80

Naïve −0.61 (0.15) 0.15 9.4%

Gold standard −1.10 (0.16) 0.15 93.2%

Model 1 −1.10 (0.30) 0.28 94.4%

Model 2 (underlying model) −1.10 (0.29) 0.28 94.6%

Model 3 −1.28 (0.26) 0.26 90.0%

Model selectionb −1.10 (0.29) 0.28 94.2%

Setting 3: SEX1 = 0.60, SPX1 = 0.91, SEX0 = 0.48, SPX0 = 0.94, SEY11 = 0.50, SPY11 = 0.98, SEY10 = 0.21, SPY10 = 0.99, SEY01 = 0.63, SPY01 = 
0.97, SEY00 = 0.31, SPY00 = 0.99

Naïve 0.82 (0.27) 0.20 0

Gold standard −1.11 (0.15) 0.15 94.6%

Model 1 (underlying model) −1.12 (0.28) 0.27 94.1%

Model 2 −1.00 (0.27) 0.27 85.2%

Model 3 −0.62 (0.27) 0.27 58.3%

Model selectionc −1.11 (0.28) 0.27 93.2%

Notes: 500 simulation studies; 229 internal validation observations and 687 main study observations per simulation. Data were generated from a 

multinomial distribution with cell probabilities of (π11 = 0.10, π10 = 0.30, π01 = 0.30, π00 = 0.30). True log(OR) = −1.10. Naïve model uses (Y*, 

X*) data. Gold-standard model uses (Y, X) data. Model 1 assumes dependent and differential misclassification. Model 2 assumes independent and 
differential misclassification. Model 3 assumes completely nondifferential misclassification. Model selection based on the strategy described in 
Section 2.7.

a
Model 3 selected 88.8% of the time.

b
Model 2 selected 92.4% of the time.

c
Model 1 selected 85.0% of the time.
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Table 5

Performance of model selection with main/internal validation study-based analysis under a moderate positive 

association

Model
 (SD)

Mean SE 95% CI coverage

Setting 4: SEX = 0.60, SPX = 0.90, SEY = 0.70, SPY = 0.80

Naïve 0.22(0.13) 0.14 1.2%

Gold standard 0.81(0.14) 0.14 94.6%

Model 1 0.82(0.27) 0.26 94.8%

Model 2 0.82(0.26) 0.26 95.0%

Model 3 (underlying model) 0.82(0.25) 0.25 95.8%

Model selectiona 0.82(0.25) 0.25 95.8%

Setting 5: SEX1 = 0.60, SPX1 = 0.60, SEX0 = 0.90, SPX0 = 0.90, SEY1 = 0.40, SPY1 = 0.98, SEY0 = 0.70, SPY0 = 0.80

Naïve −0.28(0.14) 0.14 0

Gold standard 0.81(0.14) 0.14 94.6%

Model 1 0.81(0.26) 0.26 95.6%

Model 2 (underlying model) 0.81(0.25) 0.25 94.8%

Model 3 0.60(0.25) 0.25 84.6%

Model selectionb 0.81(0.25) 0.25 95.0%

Setting 6: SEX1 = 0.60, SPX1 = 0.91, SEX0 = 0.48, SPX0 = 0.94, SEY11 = 0.50, SPY11 = 0.98, SEY10 = 0.21, SPY10 = 0.99, SEY01 = 0.63, SPY01 = 
0.97, SEY00 = 0.31, SPY00 = 0.99

Naïve 1.64(0.17) 0.17 7.2%

Gold standard 0.82(0.14) 0.14 94.6%

Model 1 (underlying model) 0.81(0.25) 0.26 95.0%

Model 2 0.93(0.24) 0.25 86.6%

Model 3 1.60(0.24) 0.24 17.0%

Model selectionc 0.81(0.25) 0.26 94.4%

Notes: 500 simulation studies; 229 internal validation observations and 687 main study observations per simulation. Data were generated from a 

multinomial distribution with cell probabilities of (π11 = 0.30, π10 = 0.20, π01 = 0.20, π00 = 0.30). True log(OR) = 0.81. Naïve model uses (Y*, 

X*) data. Gold-standard model uses (Y, X) data. Model 1 assumes dependent and differential misclassification. Model 2 assumes independent and 
differential misclassification. Model 3 assumes completely nondifferential misclassification. Model selection based on the strategy described in 
Section 2.7.

a
Model 3 selected 88.0% of the time.

b
Model 2 selected 94.0% of the time.

c
Model 1 selected 94.8% of the time.
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Table 6

Performance of model selection with main/internal validation study-based analysis under a strong positive 

association

Model
 (SD)

Mean SE 95% CI coverage

Setting 7: SEX = 0.60, SPX = 0.90, SEY = 0.70, SPY = 0.80

Naïve 0.46(0.14) 0.14 0

Gold standard 1.80(0.14) 0.15 96.4%

Model 1 1.82(0.28) 0.30 96.8%

Model 2 1.82(0.28) 0.29 96.8%

Model 3 (underlying model) 1.82(0.27) 0.28 96.4%

Model selectiona 1.82(0.28) 0.28 96.4%

Setting 8: SEX1 = 0.60, SPX1 = 0.60, SE X0 = 0.90, SPX0 = 0.90, SEY1 = 0.40, SPY1 = 0.98, SEY0 = 0.70, SPY0 = 0.80

Naïve −0.20(0.15) 0.15 0

Gold standard 1.80(0.16) 0.15 93.8%

Model 1 1.81(0.31) 0.29 93.6%

Model 2 (underlying model) 1.81(0.31) 0.29 93.4%

Model 3 1.59(0.30) 0.29 85.8%

Model selectionb 1.81(0.31) 0.29 93.2%

Setting 9: SEX1 = 0.60, SPX1 = 0.91, SE X0 = 0.48, SPX0 = 0.94, SEY11 = 0.50, SPY11 = 0.98, SEY10 = 0.21, SPY10 = 0.99, SEY01 = 0.63, SPY01 = 
0.97, SE Y00 = 0.31, SPY00 = 0.99

Naïve 1.98(0.18) 0.18 68.2%

Gold standard 1.79(0.14) 0.15 96.8%

Model 1 (underlying model) 1.80(0.28) 0.29 97.0%

Model 2 1.95(0.28) 0.28 92.8%

Model 3 2.57(0.27) 0.27 19.8%

Model selectionc 1.80(0.28) 0.29 97.0%

Notes: 500 simulation studies; 229 internal validation observations and 687 main study observations per simulation. Data were generated from a 

multinomial distribution with cell probabilities of (π11 = 0.30, π10 = 0.10, π01 = 0.20, π00 = 0.40). True log (OR) = 1.79. Naïve model uses (Y*, 

X*) data. Gold-standard model uses (Y, X) data. Model 1 assumes dependent and differential misclassification. Model 2 assumes independent and 
differential misclassification. Model 3 assumes completely nondifferential misclassification. Model selection based on the strategy described in 
Section 2.7.

a
Model 3 selected 87.2% of the time.

b
Model 2 selected 90.6% of the time.

c
Model 1 selected 95.8% of the time.
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